

Feasibility of Partial Upgrading of Athabasca Bitumen

Jim Colyar, Technology Consultant
Colyar Consultants
October 2010

STUDY OBJECTIVES

- Develop Relatively Simple, Technically Proven "Field" Technology to Partially Upgrade Athabasca Bitumen
 - Produces a Stable, Saleable SCO and a Heavy Hydrocarbon Reject Stream
 - Processing Steps Employed Based on Consultants Expertise of Existing Upgrading Processes

Study Objectives (Cont'd)

- Evaluate Economic Feasibility of Process for Both In-Situ (SAGD) and Mining Projects
 - Develop Material and Energy Balances, Investment and Operating Costs
 - Integration of Process with SAGD or Mining
 - Estimate Profitability and Determine Sensitivity to Light-Heavy Price Margin and Oil and Natural Gas Prices
 - Revenues Compared to DilBit Production
 - Develop Process Configuration for Minimizing Carbon Emissions (CO₂ Capture) and Estimate Profitability

PARTIAL UPGRADING

What is Partial Upgrading?

- Objective: Produce Transportable SCO from Heavy Oil Feedstocks
- SCO will Resemble 20 API Heavy Crude
- Typically Implemented in the Field, Near Resource Location
- Characterized by:
 - Relatively Low Investment
 - Simple Processing Configuration
 - Produces Heavy Unconverted ByProduct
- Issues Concerning SCO Value and Stability

Partial Upgrading Developed by Colyar Consultants

Partial Upgrading Process

- Utilizes Proven Processing Steps
- Minimal R&D Required to Validate and Confirm Yields and Costs
- Requires Relatively Small Quantity of Hydrogen
- Completely Eliminates the Need for Diluent
- Results in a 78 V% Yield of Stable SCO
- Bottoms Reject Product can be Utilized for Energy Production

STUDY BASIS AND CASES INVESTIGATED

Important Parameters and Assumptions - Technical

- SAGD Steam to Oil Ratio of 2.5
- Bitumen Production Rate
 - SAGD: 50,000 BPSD
 - Mining: 150,000 BPSD
- Natural Gas Liquid Used as Diluent for Base DilBit Case
 - Blending Ratio of ~40 Bbl Diluent/Bbl of Bitumen
- Partial Upgrading plus Bottom Reject Processing Facility Includes all Offsites and Utilities

Important Parameters and Assumptions - Economic

- Western Canadian Location
- 2010 US \$ Basis
- Base Light Oil (WTI) Price of \$80/Bbl
- Natural Gas Price = 50% of WTI Price (Energy Basis) = \$6.67/MM Btu
- 94% On-Stream Time
- 20 Year Project Life
- Investments Include Offsites, Owners' Costs and Contingency
- Power Cost of \$50/MW-Hr
- "Tax" of \$30/MT of CO₂ to Evaluate CO₂ Capture Cases

CC

DilBit and SCO Values

- Diluent Price is a Premium over the Light Oil Price
 - Premium is a Function of Light-Heavy Oil Margin
 - Premium is Typically 5 20%
- DilBit and SCO Values are Estimated from Valuation Model
 - Estimated Value is a Function of Oil Inspections Including Gravity,
 Sulfur and Residue Content
 - Model Results are Calibrated with Average Historical Data on a Known Crude or Blend (e.g. CLB or LLB)
 - Historical Average for DilBit is a 25-30% Differential
- Alternate Case with Small Light-Heavy Oil Margin also Evaluated
 - DilBit Set at 90% of Light Oil Price
 - SCO Price Estimated at 90 100% of Light Oil Price
 - Representative of Situation in 2009/2010 Timeframe

SAGD Study Cases Evaluated

- Base Case
 - DilBit Production
 - Natural Gas Utilized to Produce Required SAGD Steam
 - Natural Gas Liquids Used as Diluent
- Case 1 FBC for SAGD Steam Production
 - Partial Upgrading / SCO Production
 - Diluent Returned to Field
 - Reject Product Sent to Fluidized-Bed Combustor to Produce Steam Required for SAGD
 - Possible Extra HP Steam Used to Produce Power
 - SMR Used to Produce Hydrogen for Partial Upgrading

SAGD Study Cases Evaluated (Cont'd)

- Case 2 Gasification for SAGD Steam and H₂ Production
 - Partial Upgrading / SCO Production
 - Diluent Returned to Field
 - Reject Product Sent to Oxygen Fed Gasifier
 - Gasifier Syngas is Split
 - Majority is Combusted to Produce Steam for SAGD
 - Smaller Quantity Used to Produce Hydrogen for Partial Upgrading
- Case 3 Gasification (IGCC) for H₂ and Power Production
 - Partial Upgrading / SCO Production
 - Diluent Returned to Field
 - Reject Product Sent to Oxygen Fed Gasifier to:
 - Produce Steam for Process (not for SAGD)
 - Produce Hydrogen for Partial Upgrading
 - Produce Significant Power via IGCC

Mining Study Cases Evaluated

- Base Case
 - DilBit Production
 - Natural Gas Liquids Used as Diluent
- Case 4 Gasification (IGCC) for Hydrogen and Power Production
 - Similar to Case 3 but at Larger Scale
 - Partial Upgrading / SCO Production
 - Diluent Returned to Field
 - Reject Product Sent to Gasifier to:
 - Produce Steam for Process
 - Produce Hydrogen for Partial Upgrading
 - Power via IGCC

CO₂ Capture Alternate Cases

- For Each Case (1 through 4) also Examined Alternate Design where CO₂ is Captured and Compressed
 - Case 1
 - OxyCombustion in FBC
 - CO₂ Capture in SMR
 - Case 2
 - CO₂ Capture in Gasification Plant
 - Hydrogen Rich (~90%) Stream (from Upstream of PSA)
 Combusted to Produce SAGD Steam
 - Cases 3 and 4
 - CO₂ Capture in Gasification Plant
 - Hydrogen Rich Stream (Upstream of PSA) Sent to Gas Turbine in IGCC to Produce Power

STUDY RESULTS

- SCO Yield and Quality
 - Yield of 78 V% on Bitumen Feed
 - API Gravity and Viscosity Similar to DilBit
 - Lower Residue, Metals, CCR, Sulfur and Asphaltenes
 - Stable (Low Asphaltene Content)
- Effect of CO₂ Capture (with \$30/MT Tax) also Shown in Each Figure
- Project Investment (See Figure)
 - Includes Partial Upgrading and Reject Stream Processing Facilities
 - Lowest Investment for FBC (Case 1), Highest Investment for IGCC (Case 3)

Study Results (Cont'd)

- Net Revenues (over DilBit Production) and Project Pre-Tax IRR Shown in Figures
 - Net Revenue is <u>Incremental Revenue</u> to Heavy Oil Producer if Partial Upgrading with Reject Processing is Utilized Instead of DilBit Production
 - Net Revenues are:

Partial Upgrading Revenues (SCO Sales)

- Partial Upgrading Operating Costs
- DilBit Gross Revenues (DilBit Sales)
- + DilBit Diluent Cost
- + DilBit Natural Gas Cost (if SAGD Steam Produced via Reject Processing)

Bitumen, DilBit and SCO Inspections

<u>Inspection</u>	<u>Bitumen</u>	<u>DilBit</u>	Study SCO
Gravity, °API	7-9	20	19
Viscosity@4°C, cSt	-	<350	<350
Sulfur, W%	5	3.9	2.3
Vacuum Residue, V%	56	43	42
CCR, W%	16	12	5
Nickel + Vanadium, Wppm	300	80	50
Asphaltenes, W%	11	8	<1

Estimated Investment

Annual Net Revenues Over Base Case

Project Pre-Tax IRR

Project Pre-Tax IRR Including Consequence of Tax w/o Capture

SENSITIVITY STUDIES

Parameters Investigated

- IRR vs. WTI Price
 - Also Affects Natural Gas Price since Study Gas Price is Set as a Percentage of WTI
- IRR vs. Assumed Natural Gas Price as a Percentage of WTI Price (Energy Basis)
 - Values of 30, 50 and 75% Investigated
- Net Annual Revenues at Small Light to Heavy Oil Price Differential
 - Heavy Oil (LLB Type) at 90% of Light Oil Price
 - Nearly All Cases have Negative Net Revenue when Compared to Base DilBit Case

IRR as a Function of Oil Price CO₂ Capture (Tax) Cases

Case 1 (No CO₂ Capture) IRR as a Function of Oil & Gas Prices

Annual Net Revenues – Small Lightto-Heavy Oil Margin

STUDY FINDINGS & ADDITIONAL DETAILS

Important Findings SAGD Project

- Partial Upgrading can be Profitable (IRR>10%)
 with WTI at \$80/Bbl, Natural Gas at 50% of WTI
 Price and Light-Heavy Margin at Historical
 Averages
 - Either FBC or Gasification of HC Reject Stream
 - Integrated with Upstream SAGD to Produce Required Steam
- Power Production (IGCC) from HC Reject Stream Indicates Lowest IRR
 - Not Economical Feasible at SAGD Scale (50,000 BPSD)

Important Findings SAGD Project (Cont'd)

- Higher Oil Prices Result in Higher Project Revenues Relative to DilBit Production
 - IRR Nearly Doubles at \$120/Bbl WTI Price
- In a Carbon Tax Environment
 - Without Carbon Capture (Pay Tax): FBC of HC Reject Stream is Favored over Gasification
 - With Carbon Capture: Gasification of HC Reject Stream is Favored over Oxygen fed FBC
- With a Small Light-to-Heavy Oil Margin, DilBit Production is Favored

Important Findings Mining Project

- SCO Production and Significant Power Production from Partial Upgrading Reject Stream (via IGCC) has Approximate 10% Return
 - Not Significantly Affected by Natural Gas Price
- Similar Profitability for Carbon Capture/Tax
 Situation with Approximately 5% Incremental
 Investment
- With a Small Light-to-Heavy Oil Margin (i.e. 10%)
 - Large Revenue Loss When Compared to DilBit Production

For Additional Information

- Detailed Study Report can be Purchased from Colyar Consultants
- Study can be Customized for:
 - Specific Crude and Feedrate
 - Alternate Bottoms Reject Use
 - Upstream Requirements
 - Economic Parameters